METABOTROPIC GLUTAMATE RECEPTOR 1 (GRM1), IS A MOLECULAR TARGET FOR MELANOMA
-Lifetime melanoma incidence in the U.S.
 -men 1:53
 -women 1:78
- common type of cancer and cancer death between the ages of 20-35 (Houghton, 2002)
- 80% of skin cancer deaths are from melanoma
- surgical removal at early stages cures the disease in most cases

But…
-5 year survival rate if melanoma has spread to lymph nodes is 60%
- 5 year survival rate if melanoma has spread to distant organs (liver, bones, brain, etc.) is 16%

(Cancer Facts & Figures 2007, American Cancer Society)
An estimated 60,000 new cases of melanoma will be diagnosed in 2007. Close to 8000 of which will result in death.

(Cancer Facts & Figures 2007, American Cancer Society)
Background

- Our laboratory has a transgenic mouse model (TG-3) with predisposition to melanoma.

- At transgene integration site, about 70kb of host DNA was deleted. The deleted DNA was part of intron 3 of Grm1.

- This disruption of host DNA resulted in ectopic expression of Grm1 in melanocytes.

- We showed that the aberrant expression of Grm1 in melanocytes is sufficient to induce melanoma development in vivo as demonstrated by a new transgenic line constructed with Grm1 cDNA regulated by Dct promoter.
Conclusion: *In vivo*, ectopic expression of Grm1 in melanocytes is sufficient to induce melanocytic neoplasia.
What is Grm1?

- Grm1 is Metabotropic Glutamate Receptor 1. When activated, it modulates the production of second messenger(s) through G-proteins.

- Grm1 (150kD) is a member of the G-protein-coupled-receptor family (GPCR). Grm1 is normally expressed in neuronal cells and involved in neuronal signaling.

- The ligand for Grm1 is glutamate, which is the predominant neurotransmitter in the CNS.

- Grm1 expression has not been detected in normal melanocytes from either murine or human.
GRM1 Expression in Human Melanoma Biopsy Samples

No cDNA control
Benign nevus 1
Benign nevus 2
Marker
Nodal Metastasis 1
Primary tumor
In-Transit Metastasis
Nodal Metastasis 2

Size (Kb)
1353
1078
872

GRM1 (1.1kb)
DCT (0.75kb)
Expression of GRM1 in Human Melanoma Biopsies

![Expression of GRM1 in Human Melanoma Biopsies](image)

HEM

Dysplastic Nevi

1. 2. 3. 4. 5.

GRM 1

TYRP1

Dysplastic Nevi

6. 7. 8. 9. 10. 11. 12.

GRM 1

TYRP1
IHC of GRM1 in Human Melanoma Tissue Samples

- Isotype Control
- Negative GRM1 Stain
- Positive GRM1 Stain
- Positive GRM1 Stain
IHC of GRM1 in Normal Human Skin

<table>
<thead>
<tr>
<th>Pathology</th>
<th>IHC Result</th>
<th>Total</th>
<th>Positive Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative</td>
<td>Positive</td>
<td></td>
</tr>
<tr>
<td>Melanoma</td>
<td>23</td>
<td>15</td>
<td>38</td>
</tr>
<tr>
<td>Normal skin</td>
<td>15</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>38</td>
<td>15</td>
<td>53</td>
</tr>
</tbody>
</table>
GRM1 Expression in Human Melanoma Cell Lines
GRM1 Expression in Human Melanoma Cells

Positive control

Normal human melanocytes

C8161

UACC903

WM115
(Marín and Chen, 2004)
GRM1 Antagonists

- Competitive antagonist binds to the same site as the ligand, glutamate

- Non-competitive antagonist modifies the coupling between the extracellular and the 7TM domain or it may stabilize the inactive state of the 7TM domain
Accumulation of IP3 is induced by GRM1-agonist and suppressed by GRM1-competitive or GRM1-non-competitive antagonist in human melanoma cells

Q = Quisqualate, Group I metabotropic glutamate receptor agonist

Ly = Ly367385, metabotropic glutamate receptor 1 specific competitive antagonist

Bay= Bay36-7620, metabotropic glutamate receptor 1 specific non-competitive antagonist
Activation of ERKs in Human Melanoma Cell Lines by GRM1-Agonist

<table>
<thead>
<tr>
<th>Q</th>
<th>0</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>C8161</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LY367385 (30min)

<table>
<thead>
<tr>
<th>Q</th>
<th>0</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>WM239A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LY367385 (30min)
Suppression of C8161 human melanoma cell growth by GRM1-competitive antagonist

<table>
<thead>
<tr>
<th></th>
<th>Veh 100µM</th>
<th>500µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td>100</td>
<td>53</td>
</tr>
<tr>
<td>Veh</td>
<td>80</td>
<td>28</td>
</tr>
<tr>
<td>LY367385</td>
<td>100</td>
<td>80</td>
</tr>
</tbody>
</table>

Day 4

% of no treatment (NT)

![Graph showing suppression of C8161 cell growth](graph.png)
Excess glutamate is released by human melanoma cells

Glutamate Release

- C8161
- WM239A
- WM115
- UACC903+
- UACC930-
- HEK293A
- Media Only

Cell Proliferation

- C8161
- WM239A
- WM115
- UACC903+
- UACC930-
- HEK293A
- Media Only

* p<0.001 ** p<0.008 *** p<0.139

[Glu] (uM)

- Day1: 22.49 ± 3.08
- Day2: 31.23 ± 0.02
- Day3: 35.73 ± 0.27
- Day4: 38.13 ± 6.62
- Day5: 50.34 ± 3.55
- Day6: 119.03 ± 15.54
Suppression of C8161 human melanoma cell growth by GRM1-non-competitive antagonist
C8161 melanoma cells accumulated in sub-G1 phase in the presence of GRM1 non-competitive antagonist, BAY 36-7620

<table>
<thead>
<tr>
<th>Conditions - 24hrs</th>
<th>Sub-G1</th>
<th>G0/G1</th>
<th>S</th>
<th>G2/M</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Treatment</td>
<td>2.60</td>
<td>50.36</td>
<td>25.44</td>
<td>21.60</td>
</tr>
<tr>
<td>Vehicle</td>
<td>3.30</td>
<td>48.22</td>
<td>50.42</td>
<td>23.06</td>
</tr>
<tr>
<td>BAY 36-7620</td>
<td>5.90</td>
<td>35.32</td>
<td>23.28</td>
<td>20.68</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions - 48hrs</th>
<th>Sub-G1</th>
<th>G0/G1</th>
<th>S</th>
<th>G2/M</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Treatment</td>
<td>9.74</td>
<td>55.44</td>
<td>17.60</td>
<td>17.22</td>
</tr>
<tr>
<td>Vehicle</td>
<td>7.62</td>
<td>57.86</td>
<td>17.18</td>
<td>17.34</td>
</tr>
<tr>
<td>BAY 36-7620</td>
<td>18.62</td>
<td>32.64</td>
<td>28.28</td>
<td>20.46</td>
</tr>
</tbody>
</table>

NT Veh BAY 36-7620

PARP Cleaved PARP Tubulin
Riluzole (Rilutek®)

- Riluzole is an inhibitor of glutamate release and inactivates voltage-dependent sodium channels.
- Riluzole is currently being used to treat patients with amyotrophic lateral sclerosis (ALS), glutamate is believed to be involved in pathogenesis of this disease.
- Group I metabotropic glutamate receptors (Grm1 and Grm5) have been demonstrated to be involved in glutamate release, however data for Grm1 is not so clear.
- Glutamate is the natural ligand of Grm1.
Suppression of C8161 human melanoma cell growth by Riluzole
Apoptotic Responses of Human Melanoma Cells in the Presence of Riluzole

<table>
<thead>
<tr>
<th>Conditions</th>
<th>SubG1</th>
<th>G0/G1</th>
<th>S</th>
<th>G2/M</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Treatment</td>
<td>2.60</td>
<td>50.36</td>
<td>25.44</td>
<td>21.60</td>
</tr>
<tr>
<td>Vehicle</td>
<td>3.30</td>
<td>48.22</td>
<td>25.42</td>
<td>23.06</td>
</tr>
<tr>
<td>Riluzole</td>
<td>2.94</td>
<td>5.58</td>
<td>16.38</td>
<td>75.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions</th>
<th>SubG1</th>
<th>G0/G1</th>
<th>S</th>
<th>G2/M</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Treatment</td>
<td>9.74</td>
<td>55.44</td>
<td>17.60</td>
<td>17.22</td>
</tr>
<tr>
<td>Vehicle</td>
<td>7.62</td>
<td>57.86</td>
<td>17.18</td>
<td>17.34</td>
</tr>
<tr>
<td>Riluzole</td>
<td>22.72</td>
<td>10.32</td>
<td>30.44</td>
<td>36.52</td>
</tr>
</tbody>
</table>

C8161

WM239A

Riluzole

24 Hrs

48 Hrs

NT

Veh

PARP

Cleaved PARP

Tubulin
Suppression of human melanoma cell xenografts growth by Riluzole

Oral Treatment

IV Treatment
Apoptotic responses of Riluzole treated human melanoma cell xenografts

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>NT</th>
<th>NT</th>
<th>Veh</th>
<th>Veh</th>
<th>4mM</th>
<th>IV</th>
<th>IV</th>
<th>8mM</th>
<th>IV</th>
<th>IV</th>
</tr>
</thead>
</table>

- PARP
- Cleaved PARP
- Tubulin
Induction of apoptotic cells by dominant negative mutants of GRM1 in human melanoma cells
Stable siGRM1-human melanoma clones showed reduced cell growth
The Glutamatergic System in Cancer

- Glutamate release promotes growth of malignant gliomas

- Antagonists of ionotropic glutamate receptors exert a concentration dependent anti-proliferative effect in human thyroid carcinoma, lung carcinoma, astrocytoma, colon adenocarcinoma and breast carcinoma

Summary

- Expression of GRM1 is detected in about 40% of human melanoma cell lines and biopsies.

- ERK is activated by GRM1-agonist (L-Quisqualate) treated human melanoma cell lines. Pretreatment of these cells with a GRM1-antagonist (LY367385) abolished ERK activation.

- Proliferation of human melanoma cells is suppressed by dN mutants of GRM1, GRM1-antagonists, LY367385 or BAY 36-7620, as well as an inhibitor of glutamate release, Riluzole.
Summary

• Treatment of human melanoma cells with Bay36-7620 or Riluzole resulted in the accumulation of treated cells in subG1 phase of the cell cycle

• Xenografts of GRM1 positive human melanoma cells show apoptotic responses to treatment with Riluzole

• GRM1 negative human melanoma cells are unresponsive to stimuli/inhibitors of GRM1
<table>
<thead>
<tr>
<th>Rutgers University</th>
<th>Cancer Institute of New Jersey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lili Chan</td>
<td>James Goydos</td>
</tr>
<tr>
<td>Karine Cohen-Solal</td>
<td></td>
</tr>
<tr>
<td>Ryan Gleason</td>
<td>[NHGRI]</td>
</tr>
<tr>
<td>Hwa Jin Lee</td>
<td>William Pavan</td>
</tr>
<tr>
<td>Kerine Mackason</td>
<td>Raman Sood</td>
</tr>
<tr>
<td>Yari E. Marin</td>
<td></td>
</tr>
<tr>
<td>Jeffrey Martino</td>
<td>[TGen]</td>
</tr>
<tr>
<td>Jin Namkoong</td>
<td>Pam Pollock</td>
</tr>
<tr>
<td>Anny Ng</td>
<td>Jeffrey Trent</td>
</tr>
<tr>
<td>Kenneth Reuhl</td>
<td></td>
</tr>
<tr>
<td>Kathleen Roberts</td>
<td>[The Wistar Institute]</td>
</tr>
<tr>
<td>Sean Shin</td>
<td>Steven Kazianis</td>
</tr>
<tr>
<td>Brian Wall</td>
<td>Meenhard Herlyn</td>
</tr>
<tr>
<td>Hua Zhu</td>
<td></td>
</tr>
<tr>
<td>Northwestern University</td>
<td>[Grant support:]</td>
</tr>
<tr>
<td>Mary Hendrix</td>
<td>NCI, MRF, NJ Commission on Cancer Research</td>
</tr>
</tbody>
</table>